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It is widely stated that the ratio of neutral Higgs �eld vacuum expectation values, tan �, is one of
the most diÆcult parameters to determine in either the Minimal Supersymmetric Standard Model
(MSSM) or a general type-II Two-Higgs Doublet Model (2HDM). Assuming an energy and integrated
luminosity of

p
s = 500 GeV and L = 2000 fb�1, we show that a very accurate determination of

tan � will often be possible using Higgs production rates and/or Higgs decays. Based on a TESLA
simulation, and assuming no other light Higgs bosons and 100 � mA � 200 GeV, we �nd that the
rate for the process e+e� ! bbA! bbbb provides an excellent determination of tan � at high tan �.
In the MSSM Higgs sector, the rate for e+e� ! bbA+ bbH ! bbbb (e+e� ! HA! bbbb) provides
a good determination of tan � at high (low) tan �, respectively, at moderate mA values. We also
show that direct measurement of the average total width of the H and A in e+e� ! HA ! bbbb
events provides an excellent determination of tan� at large tan �.

I. INTRODUCTION

A future linear collider has great potential for discovering new particles and measuring their properties.
Theories beyond the Standard Model (SM) that resolve the hierarchy and �ne-tuning problems typically involve
extensions of its single-doublet Higgs sector to at least a two-doublet Higgs sector (2HDM). The most attractive
such model is the MSSM, which contains a constrained two-Higgs-doublet sector. In other cases, the e�ective
theory below some energy scale is equivalent to a 2HDM extension of the SM with no other new physics.
While many parameters of theories beyond the SM can be measured with high precision, it is often stated
that determination of the important parameter tan � = hH0

ui=hH0
d i (where hH0

ui and hH0
d i are responsible for

up-type quark masses and down-type quark and lepton masses, respectively) is diÆcult, especially for large
tan �. However, Higgs boson couplings are very sensitive to tan �. In particular, for a CP-conserving Higgs
sector we have the following couplings [1] (at tree-level):

A! bb / tan �; A! tt / cot �; H+ ! tb / mb(1 + 5) tan � +mt(1� 5) cot �

h! bb / � sin�

cos �
; h! tt / cos�

sin �
; H ! bb / cos�

cos �
; H ! tt / sin�

sin �
; (1)

where � is the mixing angle in the CP-even sector.
In this report, we show how various Higgs boson measurements can be used to determine tan �, especially

when tan � is large. Our focus will be on bb+Higgs production, Higgs pair production in the bbbb �nal state
and Higgs total widths as measured in the pair production channel.

II. THE bbA! bbbb BREMSSTRAHLUNG PROCESS

The challenge of this study is the low expected production rate and the large irreducible background for a
four-jet �nal state, as discussed in a previous study [2]. Searches for b�bA and b�bh were performed in this four-jet
channel using LEP data taken at the Z resonance [3, 4, 5, 6]. A LC analysis has been performed using event
generators for the signal process e+e� ! bbA ! bbbb [7] and the e+e� ! eW�; e+e�Z; WW; ZZ; qq (q =
u; d; s; c; b); tt; hA background processes [8] that include initial-state radiation and beamstrahlung.
For a 100 GeV pseudoscalar Higgs boson and tan � = 50, the signal cross section is about 2 fb [9, 10, 11]. The

generated events were passed through the fast detector simulation SGV [12]. The detector properties closely
follow the TESLA detector Conceptual Design Report [13]. The simulation of the b-tagging performance is very
important for this analysis. The eÆciency versus purity distribution for the simulated b-tagging performance is
shown in Fig. 1 for the hadronic event sample e+e� ! q�q for 5 avors, where eÆciency is the ratio of simulated
bb events after the selection to all simulated bb events, and purity is the ratio of simulated bb events after
the selection to all selected qq events. Details of the event selection and background reduction are described
elsewhere [2].
FormA = 100GeV in the context of the MSSM, the SM-like Higgs boson is the H while the light h is decoupled

from WW;ZZ [cos(� � �) � 1 and sin(� � �) � 0]. The bbh coupling is essentially equal (in magnitude) to
the bbA coupling (/ tan � at the tree level) and mh � mA, implying that it would not be possible to separate
these two signals. Also important will be hA production, which is / cos(� � �) and will have full strength in
this particular situation; HA production will be strongly suppressed. We focus �rst on bbA! bbbb.
The expected background rate for a given bbA ! bbbb signal eÆciency is shown in Fig. 2. One component

of the background is hA ! bbbb; our selection procedures are, in part, designed to reduce this piece of the
background as much as possible (e.g. by removing events with m

bb
� mh for the second bb pair). Nonetheless,
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FIG. 1: b-tagging performance.
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it may lead to signi�cant systematic error in the determination of tan � (see below). For the bbA! bbbb signal,

the sensitivity S=
p
B for mA = 100 GeV is almost independent of the working point choice of signal eÆciency

in the range �sel = 5% to 50%. For a working point choice of 10% eÆciency, the total simulated background of
about 16 million events is reduced to 100 background events with an equal number of signal events at tan � = 50.
If this were the only contributing process, the resulting error on tan � = 50 would be 7%: � tan2 �= tan2 � =
�S=S =

p
S + B=S = 0:14: For smaller values of tan �, the sensitivity decreases rapidly. A 5� signal detection

is still possible for tan � = 35. In the MSSM context, the bbh signal would essentially double the number of
signal events and have exactly the same tan� dependence, yielding � tan2 �= tan2 � � p

300=200 � 0:085 for
tan � = 50.
Although the number of hA background events is very small compared to the other background reactions

after the event selection, interference between the signal bbA ! bbbb (plus bbh ! bbbb) and the background
hA! bbbb reaction could be important. At the working point, and after applying the selection procedures, the
expected rate for the latter is 2� 1 events for L = 500 fb�1. Let us momentarily retain only the bbA signal in
discussing the interference. We �rst calculate the cross sections �(e+e� ! bbA! bbbb), �(e+e� ! hA! bbbb),
and �(e+e� ! bbA + hA! bbbb) with CompHEP [14] before selections and de�ne the interference as �interf =
�
bbA+hA

� �
bbA

� �hA. For the default value mb = 4:62 GeV, at tan � = 50 we obtain �
bbA

= 1:83� 0:01 fb,
�hA = 36:85�0:10 fb, �

bbA+hA
= 39:23�0:12 fb, �interf = 0:55�0:16 fb. We observe a constructive interference

similar in size to the signal. Thus, more signal events are expected than simulated and the statistical error
estimate is conservative. After selection cuts, we have found 100 signal events vs. 2 hA background events. The
maximuminterference magnitude arises if the interference events are signal-like yielding an interference excess of
(10+

p
2)2�100�2 � 28, a percentage (� 30%) similar to the ratio obtained before selection cuts. If the events

from the interference are background-like, the resulting systematic error will be small, since the hA background
is only a small part of the total background. Of course, in the MSSM context we have an exact prediction as a
function of tan� for the combined contribution of hA ! bbbb and bbA ! bbbb (plus bbh ! bbbb), including all
interferences, and this exact prediction can be compared to the data. In order to test this exact prediction, it
may be helpful to compare theory and experiment for several di�erent event selection procedures, including ones
that give more emphasis to the hA process. Of course, this exact prediction depends somewhat on other MSSM
parameters, especially if decays of the h or H to pairs of supersymmetric particles are allowed or ratios of certain
MSSM parameters are relatively large [15]. If this type of uncertainty exists, the systematic error on tan � can
still be controlled by simultaneously simulating all sources of bbbb events for various tan � values and �tting
the complete data set (assuming that the MSSM parameters are known suÆciently well). Another possible
theoretical systematic uncertainty derives from higher-order corrections. The full NLO QCD corrections are
given in [16, 17]. There it is found that using the running b-quark mass incorporates the bulk of the NLO
corrections. For example, for mA = 100 GeV, employing mb(100 GeV) � 2:92 GeV vs. mb(mb) � 4:62 GeV
yields (before cuts) a cross section of � 0:75 fb vs. � 2 fb, respectively, at tan � = 50. The signal rates and
resulting errors quoted in this section are those computed using mb = 4:62 GeV. Use of the running mass
would reduce the event rates and increase our error estimates; the resulting errors will be given in the MSSM
context in our �nal �gure. Higher-order corrections of all kinds will be even better known by the time the
Linear Collider (LC) is constructed and data is taken and thus should not be a signi�cant source of systematic
uncertainty. The �nal source of systematic uncertainty is that associated with knowing the exact eÆciency of
the event selection procedure. At the working point of �sel = 10%, to achieve � tan�= tan � < 0:05 requires
��sel=�sel < 0:1, equivalent to ��sel < 1%. This is probably the best that can be done.
In addition to the hA Higgs boson background, two other Higgs boson processes could lead to a bbbb topology.

First, the process e+e� ! HZ can give a bbbb �nal state. In fact, for large tan � the HZ cross section is maximal
and similar in size to the hA cross section. Nonetheless, its contribution to the background is much smaller
because the HZ ! bbbb branching is below 10% compared to about 80% for hA! bbbb. Since the hA process
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FIG. 2: Plots for
p
s = 500 GeV and bbA events only, before including running of the b-quark mass. Left: Final

background rate vs. signal eÆciency for mA = 100 GeV and L = 500 fb�1. Right: Corresponding tan � statistical error
for L = 2000 fb�1 and mA = 100; 150; 200 GeV.
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contributed only 2% of the total background, the contribution to the background from the HZ process can be
neglected. The second Higgs boson process leading to a bbbb topology is that already discussed, e+e� ! bbh. The
only distinction between this and the e+e� ! bbA process is a small di�erence in the angular distribution due to
the di�erent production matrix elements. Thus, the selection eÆciency is almost identical. The production rate
of the bbA process is proportional to tan2 � while the bbh production rate is proportional to sin2�= cos2 �. In
the MSSM context, this latter factor is � tan2 � formA = 100 GeV and large tan� (assumingMSUSY � 1 TeV).
In the general 2HDM, since tan � � 1= cos � at large tan �, the expected rate depends mostly on sin� and the
h mass. In this more general case, if mh � mA but the MSSM expectation of � � �� � ��=2 does not hold,
the enhancement of the bbA signal by the bbh addition would only allow a determination of j sin�j as a function
of the presumed value of tan� (using the constraint that one must obtain the observed number of bbh + bbA
events). Independent measurements of the HZ and hA production rates would then be needed to determine
the value of � � � and only then could � and � be measured separately.
It is estimated that L = 2000 fb�1 can be accumulated after several years of data-taking at the LC. Such

high total luminosity is of particular importance for the tan � determination. In Fig. 2 we show the expected
statistical error on tan � for mA = 100; 150 and 200 GeV, assuming that the only measured process is bbA. At
the two higher mA values, in the MSSM context it is the H that would be decoupled and have mass mH � mA

and the h would be SM-like. Consequently, the bbH rate would be essentially identical to the bbA rate and,
assuming that one could verify the MSSM Higgs context by independent means, would lead to still smaller
tan � statistical errors than plotted, the exact decrease depending upon the signal to background ratio. For
mA = 150 and 200 GeV, the HA process (like the hA process at mA = 100 GeV) would have to be computed
in a speci�c model context or its relative weight �tted by studying bbbb production in greater detail in order to
minimize any systematic error from this source.

III. COMPLEMENTARY METHODS: H;A BRANCHING RATIOS AND TOTAL WIDTHS

Owing to the large variation of the H, A and H� branching fractions to various allowed modes for low to
moderate tan � in the MSSM, tan� can be determined with good precision in this range using HA and H+H�

pair production (the cross sections for which are nearly tan � independent). This was �rst demonstrated
in [19, 20]. There, a number of models for which SUSY decays of the H, A and H� are kinematically allowed
were considered. It was found that by measuring all available ratios of branching ratios it was possible to
determine tan � to better (often much better) than 10% for tan � values ranging from 2 up to as high as 25 to
30 for mA in the 200{400 GeV range, assuming

p
s = 1 TeV and Le� = 80 fb�1 (equivalent to L = 2000 fb�1

for a selection eÆciency of 4%). A more recent analysis using a few speci�c points in MSSM parameter space,
focusing on the bbbb event rate and including a study at

p
s = 500 GeV, is given in [21]. This latter study

uses a selection eÆciency of 13% and negligible background for detection of e+e� ! hA ! bbbb (relevant for
mA � 100 GeV) or e+e� ! HA! bbbb (relevant for mA � 150 GeV) and �nds small errors for tan � at lower
tan � values. Both [19, 20] and [21] assume MSSM scenarios in which there are signi�cant decays of the A and
H to pairs of SUSY particles, in particular neutralinos and charginos. These decays remain non-negligible up
to fairly high tan � values, as a result of which the bb branching fractions of the A and H continue to vary
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FIG. 3: For the MSSM with mA = 200 GeV, and assuming L = 2000 fb�1 at
p
s = 500 GeV, we plot the 1� statistical

error band in �tan �= tan� as a function of tan� based on: (a) the rate for e+e� ! bbA+ bbH ! bbbb (with the HA
pair process reduced by the event selection); (b) the rate for e+e� ! HA ! bbbb; (c) the average of �Htot and �Atot as
determined in e+e� ! HA ! bbbb events. Results for (a), (b) and (c) all include running b-quark mass e�ects and
employ HDECAY [18].

noticeably as tan � increases rather than being nearly constant. In the absence of SUSY decays, the bbbb rate
would asymptote quickly to a �xed value as tan� increases. As we shall see, this means that smaller errors for
the tan � determination using the HA! bbbb rate are achieved if SUSY decays are present.
For this report we re-examined the errors on tan � that could be achieved following procedures related to

those of [19, 20, 21], but using updated luminosity expectations and somewhat more realistic experimental
assumptions and analysis techniques. We restricted the analysis to the process e+e� ! HA ! bbbb, ignoring
possible additional sensitivity through ratios relative to other �nal states. With both Higgs bosons reconstructed
in their bb �nal state as two back-to-back clusters of similar mass, backgrounds are expected to be negligible.
Figure 3 compares the results for � tan�= tan � obtained using the e+e� ! HA! bbbb rate to those based

on the bbH + bbA ! bbbb rate (after including b-quark mass running). For the former, two di�erent MSSM
scenarios are considered:

(I) meg = 1 TeV, � = M2 = 250 GeV, metL = mebL = metR = mebR � met = 1 TeV, Ab = A� = 0, At =

�= tan� +
p
6met (maximal mixing);

(II) meg = 350 GeV, � = 272 GeV, M2 = 120 GeV, metL = mebL = 356 GeV, metR = 273 GeV, mebR = 400 GeV,

A� = 0, Ab = �672 GeV, At = �369 GeV.
In scenario (I), SUSY decays of the H and A are kinematically forbidden. Scenario (II) is taken from [21] in
which SUSY decays (mainly to e�01e�01) are allowed. In computing the statistical errors in tan �, we assume an

event selection eÆciency of 10% and no background; N (bbbb) �
q
N (bbbb) � 10 is required to set an upper

(lower) tan � limit, respectively. To give an idea of the sensitivity of the bbbb event rate to tan �, we give a
few numbers (assuming

p
s = 500 GeV and L = 2000 fb�1); the bbbb event rate, after 10% selection eÆciency,

is 1, 5, 34, 1415 1842 [8, 77, 464, 1762, 1859] at tan � = 1, 2, 3, 10, 40, in scenarios (II) [(I)], respectively.
These di�ering tan � dependencies imply signi�cant sensitivity of the tan � errors to the scenario choice, with
worse errors for scenario (I). Where plotted, errors for tan � from the bbH + bbA ! bbbb rate are essentially
independent of the scenario choice.
Regarding the tan � error from the HA! bbbb rate, we see from the above event numbers for scenario (I) that

once tan� reaches 10 to 12 the bbbb rate will not change much if tan� is increased further since the branching
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ratios are asymptoting. In contrast, if tan � is decreased the bbbb rate declines signi�cantly as other decay
channels come into play. Thus, meaningful lower bounds on tan � are retained out to relatively substantial
tan � values whereas upper bounds on tan � disappear for tan � >� 10� 12. In scenario (II), we note that mH

begins to decrease for tan � >� 30, resulting in an increased HA production cross section, which improves the
tan � limit. However, there are signi�cant theoretical uncertainties in this region, and we cut o� the curve at
tan � = 30. Obviously, the bbH + bbA! bbbb rate determination quickly becomes far superior once tan � >� 20.
Let us now turn to determining tan � using the intrinsic total widths of the H and A. Very roughly, it

is only for tan � > 10 that they can provide a tan � determination. This is because (a) the widths are only
> 5 GeV (the detector resolution discussed below) for tan � > 10 and (b) the number of events in the bbbb
�nal state becomes maximal once tan � > 10. We �rst discuss the experimental issues in determining the Higgs
boson width. The expected precision of the SM Higgs boson width determination at the LHC and at a LC
was studied [22]. The statistical method used in [22] was based on a convolution of the estimated �res = 5
GeV detector resolution with a Breit-Wigner for the intrinsic width. It was applied to a HA simulation [23]
for a LC. An overall �t to the bb mass distribution gives a Higgs boson width which is about 2� larger than
expected from the convolution of the 5 GeV resolution with the intrinsic Higgs width. This can be traced to
the fact that the overall �t includes wings of the mass distribution that are present due to wrong pairings of
the b-jets. The mass distribution contains about 400 di-jet masses (2 entries per HA event), of which about
300 are in a central peak. If one �ts only the central peak, the width is close to that expected based on simply
convoluting the 5 GeV resolution with the intrinsic Higgs width. This indicates that about 25% of the time
wrong jet-pairings are made and contribute to the wings of the mass distribution. Therefore, our estimates of
the error on the determination of the Higgs width will be based on the assumption that only 3/4 of the events
(i.e. those in the central peak) retained after our basic event selection cuts (with assumed selection eÆciency
of 10%) can be used in the statistics computation. The m

bb
for each of the bb pairs identi�ed with the H or

A is binned in a single mass distribution. This is appropriate since the H and A are highly degenerate for the
large tan � values being considered. Thus, our observable is the average of the widths �Htot and �Atot. Finally, we
note that the detector resolution will not be precisely determined. There will be a certain level of systematic
uncertainty which we have estimated at 10% of �res, i.e. 0.5 GeV. This systematic uncertainty considerably
weakens our ability to determine tan � at the lower values of tan � for which �Htot and �

A
tot are smaller than �res.

This systematic uncertainty should be carefully studied as part of any eventual experimental analysis.
Our study is done in the context of the MSSM and assumes the stated soft SUSY breaking parameters. For

these parameters, the one-loop corrections to the bb couplings of the H and A and the stop/sbottom mixing
present in the one-loop corrections to the Higgs mass matrix [15] are small. More generally, however, substantial
ambiguity can arise if the sign and magnitude of � is not �xed. However, assuming that these parameters are
known, the results for the error on tan � from the width measurement are quite insensitive to the precise
scenario. Indeed, results for our two SUSY scenarios (I) and (II) are indistinguishable.
The resulting accuracy for tan � obtained frommeasuring the average H=A width is shown in Fig. 3, assuming

mA = 200 GeV, L = 2000 fb�1 and
p
s = 500 GeV. We see that good accuracy is already achieved for tan �

as low as 25 with extraordinary accuracy predicted for very large tan �. The sharp deterioration in the lower
bound on tan � for tan � <� 24 occurs because the width falls below �res as tan � is taken below the input value
and sensitivity to tan � is lost. If there were no systematic error in �res, this sharp fall o� would occur instead
at tan � <� 14. To understand these e�ects in a bit more detail, we again give some numbers for scenario (II).
At tan � = 50, 55 and 60, h�Htot;�Atoti � 10:4, 12:5 and 14:9 GeV, respectively. After including the detector
resolution, the e�ective average widths become 11.5, 13.4 and 15.7 GeV, respectively, whereas the total error
in the measurement of the average width, including systematic error, is � 0:54 GeV. Therefore, tan � can be
determined to about �1, or to better than �2%. This high-tan� situation can be contrasted with tan � = 15 and
20, for which h�Htot;�Atoti = 0:935 and 1.64 GeV, respectively, which become 5.09 and 5.26 GeV after including
detector resolution. Meanwhile, the total error, including the statistical error and the systematic uncertainty
for �res, is about 0.57 GeV.
The accuracies from the width measurement are somewhat better than those achieved using the bbA+bbH !

bbbb rate measurement. Of course, these two high-tan� methods for determining tan � are beautifully comple-
mentary in that they rely on very di�erent experimental observables. Both methods are nicely complementary
in their tan � coverage to the tan � determination based on the HA! bbbb rate, which comes in at lower tan �.
Still, there is a window, 10 <� tan � <� 25 in scenario (I) or 20 <� tan� <� 25 in scenario (II), for which an accurate

determination of tan � (� tan �= tan � < 0:2) using just the bbbb �nal state processes will not be possible. This
window expands rapidly as mA increases (keeping

p
s �xed). Indeed, as mA increases above 250 GeV, HA pair

production becomes kinematically forbidden at
p
s = 500 GeV and detection of the bbH + bbA processes at the

LC (or the LHC) requires [24] increasingly large values of tan �. This diÆculty persists even for
p
s � 1 TeV

and above; if mA >
p
s=2, the H and A cannot be pair-produced and yet the rate for bbH + bbA production is

undetectably small for moderate tan� values.
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In the above study, we have not made use of other decay channels of the H and A, such as H ! WW;ZZ,
H ! hh, A ! Zh and H;A !SUSY. As in the studies of [19, 20], their inclusion should signi�cantly aid in
determining tan� at low to moderate tan � values. A determination of h�Htot;�Atoti is also possible using the
bbA+ bbH ! bbbb events. Assuming that 50% of the events selected in the analysis of Section II can be used for
a �t of the average width and that 5 GeV resolution with 10% systematic error for the width measurement can
be achieved, the resulting tan � errors are similar to those from the bbA+ bbH ! bbbb event rate for tan � > 30.
A complete analysis that takes into account the signi�cant background and the broad energy spectrum of the
radiated H and A is needed. However, it should be noted that this is the only width-based technique that
would be available if HA pair production is not kinematically allowed. We have also not employed charged
Higgs boson production processes. In e+e� ! H+H� production, the absolute event rates and ratios of
branching ratios in various channels will increase the tan � accuracy at low tan � [19, 20, 25] and the total H�

width measured in the tb decay channel will add further precision to the tan � measurement at high tan �. The
rate for e+e� ! tbH� + tbH+ ! ttbb is also very sensitive to tan � and might be a valuable addition to the
e+e� ! bbA+ bbH ! bbbb rate determination of tan �. The theoretical study of [25] �nds, for example, that if
mH� = 200 GeV and tan � = 50 (tan � = 20), then the 1� errors (including systematic uncertainties) on tan �
are � tan �= tan � = 0:06 (� tan�= tan � = 0:2), respectively, for L = 2000 fb�1 and

p
s = 500 GeV.

IV. CONCLUSIONS

A high-luminosity linear collider is unique in its ability to precisely measure the value of tan �. This is because
highly precise measurements of Higgs boson production processes will be essential and are only possible at the
LC. In the context of the MSSM, a variety of complementary methods will allow an accurate determination of
tan � over much of its allowed range, including, indeed especially for, large tan � values, provided mA <�

p
s=2.

In particular, we have demonstrated the complementarity of employing: a) the rate for bbA + bbH ! bbbb; b)
the HA! bbbb rate; and c) a measurement of the average H;A total width in HA production. The analogous
charged Higgs observables | the tbH� ! tbtb rate, the H+H� ! tbtb rate and the total H� width measured
in H+H� production | will further increase the sensitivity to tan�. The possible impact of MSSM radiative
corrections on interpreting these measurements [15] will be discussed in a longer note. In the general 2HDM,
if, for example, the only non-SM-like Higgs boson with mass below

p
s is the A, then a good determination of

tan � will be possible at high tan � from the bbA! bbbb production rate.
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